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Abstract. The superfluid fraction of an atomic cloud is defined using the cloud’s response to a rotation of
the external potential, i.e. the moment of inertia. A fully quantum mechanical calculation of this moment
is based on the dispersion of Lz instead of quasi-classical averages. In this paper we derive analytical results
for the moment of inertia of a small number of non-interacting Bosons using the canonical ensemble. The
required symmetrized averages are obtained via a representation of the partition function by permutation
cycles. Our results are useful to discriminate purely quantum statistical effects from interaction effects in
studies of superfluidity and phase transitions in finite samples.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena – 05.30.Jp Boson
systems

1 Introduction

Despite recent achievements in preparing Bose condensed
atomic gases [1–3] the question of superfluidity still es-
capes direct experimental observation. This is partly due
to the difficulty to define and/or access the appropriate
experimental observables.

Our understanding of superfluidity is formed by the
physics of macroscopic systems such as liquid helium. In
those systems standard theoretical methods could be ap-
plied that required a thermodynamic limit procedure.

However, for the finite size systems prepared with trap-
ped atomic Bose gases the standard answers had to be
made more precise. E.g., one can speak of a phase tran-
sition, but a discontinuous change of system observables
does not occur in mesoscopic systems. The phase transi-
tion was linked to the ground state population, but the
most striking effect of superfluidity cannot be observed in
a direct way.

In a spatially homogeneous situation the phenomenon
of superfluidity is defined as the suppression of friction
for a linear motion slower than the velocity of sound [4].
This phenomenon is constrained to a fraction of the fluid
only, the so-called superfluid fraction. In linear response
theory the latter is calculated via the quantum mechanical
dispersion of the momentum distribution.

The suppression of friction itself can be traced back
to the appearance of excitations with a linear dispersion
relation for an interacting Bose gas in the presence of a
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condensate. It is thus inseparably connected with inter-
particle interactions. Nevertheless the superfluid fraction
mentioned above does not vanish for an ideal Bose gas due
to Bose-Einstein statistics at least for mesoscopic samples.

In the case of an atomic cloud trapped e.g. in a har-
monic potential a similar qualitative change of the spec-
trum of low lying excitations can not be observed, and
the understanding of superfluidity in rotational motion of
trapped atoms is more subtle. Instead of regarding the re-
sponse to a Galilei shift one has to consider the response
of the gas to rotations. The response coefficient then is the
moment of inertia of the trapped gas.

The approach of Brosens et al. to the moment of inertia
is based on the classical expectation value 〈x2 + y2〉 [5].
Their analysis focuses on the difference in the moment
of inertia of a totally classical Boltzmann gas in a trap
and the expectation value of 〈x2 + y2〉 for a Bose gas (cf.
Eq. (15)). Therefore they miss the true superfluid effects
that may only be analyzed by calculating the moment of
inertia from quantum mechanical response to rotations.

By contrast, Stringari’s work [6] is based on linear
response theory. He obtained the different contributions
from the condensate and the thermal cloud to the response
coefficient both for an ideal and an interacting Bose gas.
His use of the grand canonical ensemble is certainly justi-
fied for the study of 106 particles, a characteristic number
for present BEC experiments.

Instead of considering the relation between rotations
and superfluidity one might investigate the relation be-
tween dissipation and superfluidity like in [7–9] where
the onset of dissipation is analyzed depending on the
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velocity of an external perturbation. The numerical work
in [7] favors vortex creation as the main dissipation mech-
anism but it is still under debate at which critical velocity
dissipation sets in.

The rotational properties have recently been analyzed
in various works either focusing on vortices [10–12] or on
the so-called scissors mode [13,14]. The analysis of this
mode led to a connection between the quadrupole excita-
tions and the moment of inertia of the normal fluid frac-
tion [15] which might open a way to measure the moment
of inertia.

In this paper we present a calculation of the fully quan-
tum mechanical moment of inertia for a mesoscopic cloud
of non-interacting atoms in a cylindrically symmetrical
trap. Finite size effects are allowed for by calculating the
canonical ensemble averages appropriate for this regime.
In this respect, our calculations are complementary to
[6] and show markedly different results for the superfluid
fraction. It is of particular interest that all relevant aver-
ages are expressed using permutation cycles which have
already played a crucial rule in previous Path-Integral-
Monte-Carlo (PIMC) studies [16,17]. Our analytical re-
sults are compared to and corroborated by numerically
exact results computed by the PIMC method.

In Section 2 we first present the method of permutation
cycles and apply it to the evaluation of the moment of
inertia in Section 3. In Section 4, we finally compare the
results obtained by the different methods.

2 Canonical averages

We want to perform our calculations using the permuta-
tion cycle analysis introduced by Feynman [18] and the
canonical ensemble. Let us consider N particles living in
a exterior potential V (r) (r ∈ RD), so the single particle
Hamiltonian is given as usual by

H =
p2

2m
+ V (r). (1)

With the help of the eigenvalues Ei and eigenfunctions
|φi〉 H can also be written as

H =
∑
i

Ei|φi〉〈φi|. (2)

The total Hamiltonian for N particles is then given by the
sum HN =

∑N
j=1 H

(j) over all the particles.
The central physical quantity in statistical mechanics

is the partition function ZN (β) at inverse temperature
β = 1/(kT ). For a gas of N bosons ZN(β) is given by

ZN(β) =
1
N !

∑
P∈Sn

∫
dRρ(R,PR), R = (r1, . . . , rN )

(3)

where ρ(R,PR) = 〈R|e−βHN |PR〉 is the density matrix
between the point R and the permuted point PR =

(rP1, . . . , rPN ) and P is a permutation of the first N in-
teger numbers. As the total Hamiltonian HN is a sum of
independent single-particle Hamiltonians the integral fac-
torizes

ZN (β) =
1
N !

∑
P∈Sn

∫ N∏
j=1

dDrj ρ1(rj, rPj). (4)

Here, ρ1(r,rPj) = 〈rj |e−βH |rPj〉 is the single-particle
density matrix. Now, we break up the permutations into
so-called “cycles”, that is subsets of the number from 1
to N that are invariant under the action of a permutation
P . If we break up P in this way, we may get Cq cycles
of length q; as we are working in the canonical ensemble
these numbers are restricted by

∑N
q=1 qCq = N . Rear-

ranging the integrand of (4) one arrives at

ZN (β) =
∑

C1,... ,CN ;
PN
q=1 qCq=N

∏
q

Z1(qβ)Cq

Cq!qCq
(5)

for the partition function (see [18]). Here, the sum over
all combinations of “cycle populations” C1, . . . , CN is re-
stricted by

∑N
q=1 qCq = N .

By calculating the derivative with respect to βEi
one gets the formula for 〈Ni〉 for later evaluations (see
also [19])

〈Ni〉 = − 1
ZN(β)

∂ZN (β)
∂βEi

· (6)

We now apply this expression to (5) and use the fact that
Z1(qβ) =

∑
i e−qβEi to finally obtain

〈Ni〉 =
N∑
q=1

e−qβEi

Z1(qβ)
〈qCq〉. (7)

So we need to know the mean number of q-cycles 〈Cq〉 to
compute 〈Ni〉.

Evidently, 〈Cq〉 is defined by

〈Cq〉 =
1

ZN (β)

∑
C1,... ,CN ;
PN
r=1 rCr=N

N∏
r=1

Z1(rβ)Cr

Cr!rCr
Cq. (8)

To calculate this expression, we split the product into the
factors with r 6= q and the factor with r = q. Note also
that terms with Cq = 0 do not contribute. So one gets

〈Cq〉 =
1

ZN(β)

∑
C1,... ,CN ;
PN
r=1 rCr=N

N∏
r=1,r 6=q

Z1(rβ)Cr

Cr!rCr
Z1(qβ)Cq−1

(Cq − 1)!qCq−1

Z1(qβ)
q

· (9)

As Cq > 0, we can substitute Cq−1 by Cq and do the sum
again from Cq = 0 to ∞. But this means that we consider
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one q-cycle less, so
∑
r rCr = N − q. We end up with the

final formula for the cycle occupation number

〈Cq〉 =
ZN−q(β)
ZN (β)

Z1(qβ)
q

(10)

where ZN−q(β) originates from the sum over the prod-
ucts in (9). This equation together with the constraint on
the Cq’s constitute the well-known recursion relations for
ZN (β) [19].

3 Suprafluidity in a harmonic trap

In this section we want to compute the superfluid frac-
tion ρs/ρ of a gas of noninteracting bosons in a harmonic
trap. This will be done by using the permutation cycles
introduced in the last section.

The superfluid fraction can be defined via the response
of the system to infinitesimal rotations just like in the
usual case for translations [4,16]. The superfluid part
shows no response to rotations at all while its density dis-
tribution contributes to the classical moment of inertia.
Therefore, one has

ρs

ρ
= 1− ρn

ρ
, (11)

with the normal fluid fraction defined by the quotient of
the quantum mechanical and the classical moment of in-
ertia for rotations around the symmetry axis (z-axis)

ρn

ρ
=

Iqm

Iclass
· (12)

One can calculate Iqm via the response to rotations [16],
this yields

Iqm = β
(
〈L2

z〉 − 〈Lz〉2
)

(13)

or

Iqm = β〈L2
z〉, (14)

because we only consider non-rotating situations with
〈Lz〉 = 0. The classical moment of inertia is defined as
usual by

Iclass = m
N∑
j=1

〈(x2
j + y2

j )〉. (15)

We now want to compute both (14) and (15) by using
the permutation cycles of Section 2.

We consider the single-particle Hamiltonian for a de-
formed, harmonic potential in three dimensions

H =
p2

2m
+

1
2
m
(
ω2
⊥(x2 + y2) + ω2

‖z
2
)
. (16)

Its eigenfunctions can be classified by three quantum num-
bers nr = 0, 1, 2, . . . ,m = 0,±1, . . . , nz = 0, 1, . . . with

H|nr,m, nz〉 =
{
~ω⊥(2nr + |m|+ 1)

+ ~ω‖(nz + 1/2)
}
|nr,m, nz〉; (17)

they are also eigenfunctions of the angular momentum op-
erator around the z-direction

lz|nr,m, nz〉 = m~|nr,m, nz〉. (18)

The total angular momentum is given by the sum over
the angular momentum operators for the N particles in
the trap

Lz =
N∑
j=1

l(j)z . (19)

We first turn to 〈L2
z〉. Instead of expressing the sum

over all states in the thermodynamic averaging as inte-
grals over the particle positions like in (3) we here use the
basis of the single-particle states in (17) to calculate the
expectation value of L2

z (we use ij = (nr,j ,mj , nz,j) to
denote the states of particle j)

〈L2
z〉 =

1
ZNN !

∑
P∈SN

∑
i1,... ,iN

〈i1, . . . , iN |
N∑

j,k=1

l(j)z l(k)
z e−βHN |iP1, . . . , iPN〉. (20)

Again, one can factorize the matrix element to a prod-
uct of matrix elements for only one particle. The factors
are either of the form 〈ij |e−βH

(j) |iPj〉 = e−βEij δij ,iPj or

〈ij|l(j)z e−βH
(j) |iPj〉 = ~mje

−βEij δij ,iPj or 〈ij |l(j)z
2
e−βH

(j)

|iPj〉 = (~mj)2e−βEij δij ,iPj .
If now the sum of the permutations is expressed as

a sum over all cycle occupations one can see, that due to
the Kronecker-δs in the factors, all particles on the same q-
cycle have the same state. For one q-cycle, there are again
three different possibilities: if there is no l

(j)
z associated

to one of the particles on the cycle, then (20) gets the
contribution ∑

ij

e−qβEij = Z1(qβ). (21)

Or there may be only one such l(j)z . Then the contribution
is ∑

ij

~mje
−qβEij = 0, (22)

which vanishes due to the symmetry Enr ,m,nz =
Enr,−m,nz . The third possibility is to have two angular
momentum operators acting on two particles on the same
q-cycle. This contributes a factor∑

ij

(~mj)2e−qβEij =
2~2e−qβ~ω⊥

(1− e−qβ~ω⊥)2Z1(qβ). (23)

So all q-cycles contribute a factor of Z1(qβ), those involv-
ing two angular momentum operators additionally con-
tribute a factor of 2~2e−qβ~ω⊥

(1−e−qβ~ω⊥)2 ·
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Before we can write down the formula for 〈L2
z〉 we must

count the number of ways how the two lz-operators may
be distributed among the cycles: for a given number Cq
of q-cycles there are qCq particles sitting on these cycles.
They can be paired with q other particles on their own
cycle (including themselves), so there are q2Cq ways to
pair the two angular momentum operators to get (23).
This leads to

〈L2
z〉 =

1
ZNN !

∑
C1,... ,CN ;
PN
q=1 qCq=N

M
(
{Cr}

) N∑
q=1

2~2e−qβ~ω⊥

(1− e−qβ~ω⊥)2 q
2Cq

N∏
r=1

Z1(rβ)Cr , (24)

where

M
(
{Cr}

)
=

N !∏
q Cq!q

Cq
(25)

is the number of permutations with C1 1-cycles, C2 2-
cycles, etc. (see [18] above Eq. (2.154)). By using this and
equations (8) and (14)

Iqm = β〈L2
z〉 = 2~2

N∑
q=1

qβe−qβ~ω⊥

(1− e−qβ~ω⊥)2 〈qCq〉. (26)

So we can calculate the quantum mechanical value of
the momentum of inertia by using the cycle occupations
in (10).

Now we turn to the classical moment of inertia. One
can do the analogous analysis as before for Iqm. Here, one
meets terms like∑

ij

〈ij |(x2
j + y2

j )e−qβH |ij〉 =
~

mω⊥

1 + e−qβ~ω⊥

1− e−qβ~ω⊥
Z1(qβ)

(27)

in analogy to (22) or (23). Equation (27) is most eas-
ily computed using the eigenstates |nx, ny, nz〉 of the har-
monic trap Hamiltonian.

Finally, Iclass can be written as

Iclass =
~
ω⊥

N∑
q=1

1 + e−qβ~ω⊥

1− e−qβ~ω⊥
〈qCq〉, (28)

which again depends on the cycle occupation numbers.
Equations (26) and (28) constitute the main result of the
present work, they allow the computation of the superfluid
fraction from equations (11, 12) totally based on the cycle
occupation numbers in (10).

As a remark, we want to point out that equation (26)
can also be obtained via a different way: in [6], Stringari
gives a formula for the moment of inertia in an asymmet-
ric trap with trap frequencies ωx 6= ωy that follows from
general algebraic considerations

Iqm =
mN

ω2
x − ω2

y

{[
〈y2〉 − 〈x2〉

] [
ω2
x + ω2

y

]
+2
[
ω2
y〈y2〉 − ω2

x〈x2〉
]}
. (29)

In the same spirit as above we have calculated the expec-
tation value 〈x2〉 (and analogously for 〈y2〉) yielding

〈x2〉 =
~

2mNωx

N∑
q=1

1 + e−qβ~ωx

1− e−qβ~ωx
〈qCq〉, (30)

which shows how equation (28) can be generalized to an
asymmetric trap. By inserting equation (30) and the cor-
responding equation for 〈y2〉 into equation (29) one finally
arrives at a formula for the quantum mechanical moment
of inertia for the asymmetric case. By carefully evaluating
the limit ωx = ωy = ω⊥ this expression can be shown to
equal equation (26).

4 Numerical results and comparison to path
integral Monte-Carlo results

We now turn to the comparison of the cycle approach
with results from other methods for the description of the
trapped Bose gas.

In Figure 1 we show the superfluid fraction as a func-
tion of temperature for N = 25 particles in a spherical
trap. The full line shows the result originating from our
cycle analysis. It is obtained by using (11, 12, 26, 28).
〈qCq〉 has been calculated from the recursion relations for
ZN(β). The first comparison is with the model of Stringari
[6] who has given a formula for ρs/ρ based on grand canon-
ical considerations. This result is plotted with short dashes
in Figure 1.

The difference between the canonical and grand canon-
ical values is clearly visible both for N = 25 particles and
for N = 100. The two chosen examples already illustrate
that the difference between the two ensembles will vanish
in the limit N →∞.

It is interesting that by using the canonical expectation
values we can also reconcile the cycle analysis given above
with a simple two-fluid model of the inhomogeneous Bose
gas [20–22]. In that model the superfluid fraction is totally
made up of the condensed part of the system and the
normal fluid is identical to the non-condensed part. We
here modify the two-fluid model by inserting the number
of condensed particles 〈N0〉 (see (7)) from the canonical
averages. For the case of the harmonic trap, 〈N0〉 can be
written as

〈N0〉 =
N∑
q=1

(
1− e−qβ~ω⊥

)2 (
1− e−qβ~ω‖

)
〈qCq〉. (31)

To compute ρs/ρ we need the moments of inertia I0 of
the condensate and Inc of the non-condensed part. The
condensate particles all reside in the ground state of
the trap whose moment of inertia for rotations around
the z-axis is ~/ω⊥, so

I0 = 〈N0〉
~
ω⊥
· (32)

Inc is estimated by assuming that the non-condensed par-
ticles behave like a Boltzmann gas in the harmonic trap.
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Fig. 1. Superfluid density for N = 25 (a) resp. N = 100
(b) particles in a spherically symmetric harmonic trap as a
function of temperature (Tc is the usual critical temperature
for Bose condensation in a harmonic trap). The full line de-
notes our results using the cycle analysis. The short dashed
line shows the results of Stringari’s considerations based on
the grand canonical ensemble [6]. The long dashed curve stems
from the modified two-fluid model (Eq. (34)). The crosses with
error bars are from a Monte-Carlo calculation based on path
integrals.

For the inverse temperature β the moment of inertia then
equals 2/(βω2

⊥) so

Inc = Nnc
2

βω2
⊥

= Nnc
2kT
ω2
⊥
, (33)

where Nnc = N − 〈N0〉.
Finally, by noting that the condensate only contributes

to the classical moment of inertia Iclass but does not take
part in the rotation, we can estimate ρs/ρ by

ρs

ρ
≈ 1− Inc

I0 + Inc
=

1

1 + N−〈N0〉
〈N0〉

2kT
~ω⊥

· (34)

The long dashed lines in Figure 1 give a plot of this for-
mula. It fits the exact result for the canonical ensemble
surprisingly well. The two-fluid model differs from the ex-
act result only due to the small difference between the true
non-condensed part and its quasi-classical approximation.

A third way to calculate the superfluid fraction via
moments of inertia is the path integral representation of

the density matrix [18]. This approach works for both non-
interacting and interacting systems. It represents the most
important point of comparison as it is a potentially exact
method. We have implemented a Path Integral Monte-
Carlo (PIMC) code that relies on the bisection method of
Ceperley [16] and on the factorization of the complete den-
sity matrix into a non-interacting part and the interaction
correction [17].

Here, we will only show that the results discussed in
the previous section agree well — as they should — with
the data obtained from PIMC calculations without inter-
actions.

The data points (crosses) in Figure 1 show our results
for the superfluid fraction. They have been computed by
using the so-called “area formula” [16,23] which is the
most appropriate method for our investigations. The su-
perfluid fraction is obtained from

ρs
ρ

=
4m2

~2β

〈A2
z〉
〈Iz〉

· (35)

Here

Iz =
m

M

M−1,N∑
t=0,i=1

(
xi(t)xi(t+ 1) + yi(t)yi(t+ 1)

)
(36)

denotes the PIMC approximation of classical moment of
inertia. m is again the mass of the particles. xi(t) and yi(t)
are the coordinates of the ith particle on time slice t of
the PIMC simulation and there are M such time slices. Iz
clearly converges to Iclass as M →∞.

The expression

Az =
1
2

M−1,N∑
t=0,i=1

(
xi(t)yi(t+ 1)− yi(t)xi(t+ 1)

)
(37)

is the projected area perpendicular to the rotation axis z.
〈A2

z〉 is the portion of the moment of inertia that can be
traced back to the superfluid fraction [16].

As Figure 1 shows, all three methods are in good agree-
ment with each other. We have furthermore calculated the
density distribution of the particles in the trap both in
the two-fluid model and with PIMC. They also exhibit a
nice agreement thus indicating the validity of the empiri-
cal two-fluid model.

5 Summary and conclusion

The main result of our paper is the calculation of the
superfluid fraction from the permutation cycles. We have
compared this approach to the grand-canonical prediction
by Stringari and to PIMC calculations. For small parti-
cle numbers our results are in good agreement with the
exact (canonical) PIMC results and we were able to re-
produce them to a very good accuracy with a two-fluid
model which divides the gas into a condensed and a non-
condensed part where the latter is treated as a classical
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Boltzmann gas. For small particle numbers we find a dis-
tinct difference between our results and Stringari’s grand
canonical approach.

The techniques and results presented in this paper
have established a solid starting point of PIMC investi-
gations including interactions. As the calculation of the
condensate fraction in PIMC calculations of inhomoge-
neous Bose gases is still under debate, the role of the per-
mutation cycles deserves further investigations also in the
interacting case (see e.g. [24] for a related discussion).

We want to thank the referee for pointing out that Stringari’s
formula for Iqm might be of use in our calculations. J.S. thanks
M. Holzmann for a stimulating discussion on the subject. We
gratefully acknowledge financial support by DFG under Grant
Nr. SCHE 128/7-1.
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